215 research outputs found

    Multiple Antenna Techniques

    Get PDF

    The flow back tracing and DDoS defense mechanism of the TWAREN defender cloud

    Get PDF
    The TWAREN Defender Cloud is a distributed filter platform on thenetwork backbone to help defending our connecting institutions against maliciousnetwork attacks. By combining the security reports from participating schools, thissystem can block the incoming threats from the entry points, thus it helps protectingall connecting institutions in the most economic and effective way. This paper aimedat explaining the analyzer design, its mechanism to back trace DDoS attack flows totheir entry points and the defense mechanism it provides to block the threats

    Simultaneous Molecular and Hypoxia Imaging of Brain Tumors In Vivo Using Spectroscopic Photoacoustic Tomography

    Get PDF
    Noninvasive molecular and functional imaging in vivo is promising for detecting and monitoring various physiological conditions in animals and ultimately humans. To this end, we present a novel noninvasive technology, spectroscopic photoacoustic tomography (SPAT), which offers both strong optical absorption contrast and high ultrasonic spatial resolution. Optical contrast allows spectroscopic separation of signal contributions from multiple optical absorbers (e.g., oxyhemoglobin, deoxyhemoglobin, and a molecular contrast agent), thus enabling simultaneous molecular and functional imaging. SPAT successfully imaged with high resolution the distribution of a molecular contrast agent targeting integrin overexpressed in human U87 glioblastomas in nude mouse brains. Simultaneously, SPAT also imaged the hemoglobin oxygen saturation and the total hemoglobin concentration of the vasculature, which revealed hypoxia in tumor neovasculature. Therefore, SPAT can potentially lead to better understanding of the interrelationships between hemodynamics and specific biomarkers associated with tumor progression

    Photoacoustic tomography and molecular fluorescence imaging: dual modality imaging of small animal brains in vivo

    Get PDF
    We present a dual modality imaging technique by combining photoacoustic tomography (PAT) and near-infrared (NIR) fluorescence imaging for the study of animal model tumors. PAT provides high-resolution structural images of tumor angiogenesis, and fluorescence imaging offers high sensitivity to molecular probes for tumor detection. Coregistration of the PAT and fluorescence images was performed on nude mice with M21 human melanoma cell lines with αvβ3 integrin expression. An integrin αvβ3-targeted peptide-ICG conjugated NIR fluorescent contrast agent was used as the molecular probe for tumor detection. PAT was employed to noninvasively image the brain structures and the angiogenesis associated with tumors in nude mice. Coregistration of the PAT and fluorescence images was used in this study to visualize tumor location, angiogenesis, and brain structure simultaneously

    Photoacoustic molecular imaging of small animals in vivo

    Get PDF
    Molecular imaging is a newly emerging field in which the modern tools of molecular and cell biology have been married to state-of-the-art technologies for noninvasive imaging. The study of molecular imaging will lead to better methods for understanding biological processes as well as diagnosing and managing disease. Here we present noninvasive in vivo spectroscopic photoacoustic tomography (PAT)-based molecular imaging of αvβ3 integrin in a nude mouse U87 brain tumor. PAT combines high optical absorption contrast and high ultrasonic resolution by employing short laser pulses to generate acoustic waves in biological tissues through thermoelastic expansion. Spectroscopic PAT-based molecular imaging offers the separation of the contributions from different absorbers based on the differences in optical absorption spectra among those absorbers. In our case, in the near infrared (NIR) range, oxy-heamoglobin (O2Hb), deoxy-heamoglobin (HHb) and the injected αvβ3-targeted peptide-ICG conjugated NIR fluorescent contrast agent are the three main absorbers. Therefore, with the excitation by multiple wavelength laser pulses, spectroscopic PAT-based molecular imaging not only provides the level of the contrast agent accumulation in the U87 glioblastoma tumor, which is related to the metabolism and angiogenesis of the tumor, but also offers the information on tumor angiogenesis and tumor hypoxia

    Combined Photoacoustic and Molecular Fluorescence Imaging In Vivo

    Get PDF
    Because of the overwhelming scattering of light in biological tissues, the spatial resolution and imaging depth of conventional fluorescent imaging is unsatisfactory. Therefore, we present a dual modality imaging technique by combining fluorescence imaging with high-resolution noninvasive photoacoustic tomography (PAT) for the study of an animal tumor model. PAT provides high-resolution structural images of tumor angiogenesis, and fluorescence imaging offers high sensitivity to molecular probes for tumor detection. Coregistration of the PAT and fluorescence images was performed on nude mice with M21 human melanoma cell lines with alpha_vbeta_3 integrin expression. An integrin alpha_vbeta_3-targeted peptide-ICG conjugated NIR fluorescent contrast agent was used as the molecular probe for tumor detection. PAT was employed to noninvasively image the brain structure and the angiogenesis associated with tumors in mice. The coregistration between the PAT and fluorescence images was used to visualize tumor location, angiogenesis, and brain structure simultaneously

    Simultaneous Molecular and Hypoxia Imaging of Brain Tumors In Vivo

    Full text link
    • …
    corecore